Symplectic Toric Varieties

نویسنده

  • PAUL NORBURY
چکیده

These are the notes of two lectures given at the Mini Spring School An introduction to the mathematics of string theory held at Adelaide University in November 2002. It is a leisurely introduction to the mathematics surrounding toric varieties. Lecture I. Aims of Lecture I. (i) To contrast topological, Riemannian, symplectic and complex structures; (ii) to set up various topological objects that will be given Riemannian, symplectic and complex structures in the next lecture. Toric varieties: a topological construction. Toric varieties are simple examples of Riemannian, symplectic and complex manifolds. There won’t be a lot of toric varieties in the first lecture, since I am more concerned with the basic mathematics that surrounds them. For that reason, I will begin with a short description of toric varieties. Consider the following two examples consisting of an interval and a triangle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Toric Manifolds

Foreword These notes cover a short course on symplectic toric manifolds, delivered in six lectures at the summer school on Symplectic Geometry of Integrable Hamiltonian Systems, mostly for graduate students, held at the Centre de Recerca Matemàtica in Barcelona in July of 2001. The goal of this course is to provide a fast elementary introduction to toric manifolds (i.e., smooth toric varieties)...

متن کامل

Toric Hyperkähler Varieties

Extending work of Bielawski-Dancer [3] and Konno [12], we develop a theory of toric hyperkähler varieties, which involves toric geometry, matroid theory and convex polyhedra. The framework is a detailed study of semi-projective toric varieties, meaning GIT quotients of affine spaces by torus actions, and specifically, of Lawrence toric varieties, meaning GIT quotients of even-dimensional affine...

متن کامل

Orbifold Cohomology of Hypertoric Varieties

Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed as abelian hyperkähler quotients T C////T of a quaternionic affine space. Just as symplectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties are intimately related to the combinatorics of hyperplane arrangements. By developing hyperkähler analogues of symplectic techniques ...

متن کامل

Hamiltonian Torus Actions on Symplectic Orbifolds and Toric Varieties

In the first part of the paper, we build a foundation for further work on Hamiltonian actions on symplectic orbifolds. Most importantly we prove the orbifold versions of the abelian connectedness and convexity theorems. In the second half, we prove that compact symplectic orbifolds with completely integrable torus actions are classified by convex simple rational polytopes with a positive intege...

متن کامل

Questions about cobordism of symplectic and toric manifolds

1 Toric varieties are by now familiar objects in algebraic geometry, but this note is concerned with variations on that theme, and I will try to be careful about terminology. A toric variety is a kind of orbifold, and hence has mild singularities, but I will use the term toric manifold in the sense of Davis and Januszkiewicz [4]; a smooth toric variety thus has an underlying toric manifold, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006